Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis.

نویسندگان

  • Shuangwei Li
  • Diane D F Hsu
  • Bing Li
  • Xiaolin Luo
  • Nazilla Alderson
  • Liping Qiao
  • Lina Ma
  • Helen H Zhu
  • Zhao He
  • Kelly Suino-Powell
  • Kaihong Ji
  • Jiefu Li
  • Jianhua Shao
  • H Eric Xu
  • Tiangang Li
  • Gen-Sheng Feng
چکیده

Bile acid (BA) biosynthesis is tightly controlled by intrahepatic negative feedback signaling elicited by BA binding to farnesoid X receptor (FXR) and also by enterohepatic communication involving ileal BA reabsorption and FGF15/19 secretion. However, how these pathways are coordinated is poorly understood. We show here that nonreceptor tyrosine phosphatase Shp2 is a critical player that couples and regulates the intrahepatic and enterohepatic signals for repression of BA synthesis. Ablating Shp2 in hepatocytes suppressed signal relay from FGFR4, receptor for FGF15/19, and attenuated BA activation of FXR signaling, resulting in elevation of systemic BA levels and chronic hepatobiliary disorders in mice. Acting immediately downstream of FGFR4, Shp2 associates with FRS2α and promotes the receptor activation and signal relay to several pathways. These results elucidate a molecular mechanism for the control of BA homeostasis by Shp2 through the orchestration of multiple signals in hepatocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FXR agonists and FGF15 reduce fecal bile acid excretion in a mouse model of bile acid malabsorption.

Bile acid malabsorption, which in patients leads to excessive fecal bile acid excretion and diarrhea, is characterized by a vicious cycle in which the feedback regulation of bile acid synthesis is interrupted, resulting in additional bile acid production. Feedback regulation of bile acid synthesis is under the control of an endocrine pathway wherein activation of the nuclear bile acid receptor,...

متن کامل

Short-term dietary phosphate restriction up-regulates ileal fibroblast growth factor 15 gene expression in mice

Members of the fibroblast growth factor (FGF) 19 subfamily, including FGF23, FGF15/19, and FGF21, have a role as endocrine factors which influence the metabolism of inorganic phosphate (Pi) and vitamin D, bile acid, and energy. It has been reported that dietary Pi regulates circulating FGF23. In this study, the short-term effects of dietary Pi restriction on the expression of FGF19 subfamily me...

متن کامل

Deoxycholic acid differentially regulates focal adhesion kinase phosphorylation: role of tyrosine phosphatase ShP2.

Environmental factors, including dietary fats, are implicated in colonic carcinogenesis. Dietary fats modulate secondary bile acids including deoxycholic acid (DCA) concentrations in the colon, which are thought to contribute to the nutritional-related component of colon cancer risk. Here we demonstrate, for the first time, that DCA differentially regulated the site-specific phosphorylation of ...

متن کامل

Regulation of Bile Acid Synthesis by Fat-soluble Vitamins A and D*

Bile acids are required for proper absorption of dietary lipids, including fat-soluble vitamins. Here, we show that the dietary vitamins A and D inhibit bile acid synthesis by repressing hepatic expression of the rate-limiting enzyme CYP7A1. Receptors for vitamin A and D induced expression of Fgf15, an intestine-derived hormone that acts on liver to inhibit Cyp7a1. These effects were mediated t...

متن کامل

Administration of ampicillin elevates hepatic primary bile acid synthesis through suppression of ileal fibroblast growth factor 15 expression.

Administration of the antibacterial drug ampicillin (ABPC) significantly increased hepatic bile acid concentrations. In the present study, we investigated the mechanisms for the elevation of bile acid levels in ABPC-treated mice. Hepatic microsomal cholesterol 7alpha-hydroxylation and CYP7A1 mRNA level were increased 2.0-fold in ABPC-treated mice despite higher bile acid levels in the liver and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell metabolism

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2014